RENDERING

KTUM CLANCY'S

RAINBOW). |SIEGE Jalal EMansouri [gmiachie

S T - = €7 T o > - r T P aeednd

ficd” P23

i et f SRR
M’v®
A

3D TEAM

<
b\ m

Pierre-Marc Bérubé Zhuo Chen

_,/ﬁ/ ,) /
Benjamin Rouveyrol John Huelin Yoann Rocagel

AGENDA

RAINBOW RENDERER OVERVIEW
MATERIAL BASED DRAW CALL SYSTEM
CHECKERBOARD RENDERING

AGENDA

@ RAINBOW RENDERER OVERVI

‘KTDM CLANCY'S

RAINBOWAY). (SIEGE

* Rebirthof aloved franchise that is
precious toalot of hard-core gamers

* Gameplay driven

* Destruction as acore gameplay mechanic

* Destruction must be consistent between
platforms

* FirstRainbow Six shipping with the engine

* Lotsoflegacy code from previous
prototypes

SIEGE TECH MISSION
* Targeting 60FPS:

b
gt

U 14ms average on non combat situations
PU: Max 38ms linear time on CPU (consoles)

* Provide scalable destruction

* Shipat ahigher resolution than 720p onall consoles
* Commit to 4K on PCat a decent framerate

* Provide a strong PC version ona console oriented production

* i

tting on 1GB of RAM becomes a challenge with current gen

SIEGE IS ALIVE GAME

* (Graphics features can be continually
iterated on

* Test new tech toimprove look or comfort
* Auto-exposure for players

* Be careful not to break things!

SIEGE FRAME

* Hierarchical view of a GPU frame

* Average ams spent on geometry rendering
* Heavyuse of culling!
* Shadow caching!

* Average ams spent onlighting (SSRincluded)
* (heckerboard rendering helps!

e SSAD & SSRray trace done in async

* Average 4ms spent on post processing/other full screen processing

GRAPHIC —
PIPE Opagque (1.281 ms | |PostOpa | ShadowMaSky Dol | [Cust]Re solveGl | 1.0 |DeferredLig |Resohve Shadow |Deferred Cl Transparen |PostEffects {2706 ms)
R e G M Rende rOpague | 1l|LinearDe Vaolu Relre|r! Resol ClusterL i SSLR_Com |Transparen| | |ColorCorrec |FinalPost EffectsEnd {1
Dow ClusterLi Blurred Resolv el |AAFiler
Re ||BI Resghe T
ASYNCH SS5BC AOPass_async |55 |SSECDeSSLR Trac|SynoGixCompute async{7.822ms

PIPE /

SIEGE FRAME

* Hierarchical view of a CPU critical path

* 10msavgonthe critical path
* All passes and tasks able to fork and join to minimize critical path
* Shadow caching

* Max4ms linear spent on opaque pass
* Material based draw call system!

gfx=Graphic ger-Display AllSurfaces { 9.172 ms

aflgfx
I

gfx-DrawManager-Render { 9.047 ms }

ofx::DrawManager-RenderViews { 8.665 ms)

gfx::DrawManager-PreRender View { 2.15 ms gfx-EKBaseRenderer-Render(6.493 ms }

[afx: Draw] Al afx-Rende |[afx-RenderDpague (1.833ms) C -EK DeferredRenderer-ApplyPostOpague { 2.089ms) |of Jafx-EKBaseRenderer

| [|LillStar || VisualVi|Graphichode Traversal | |[RIBII | | EF"E"L' || |Gl |G |afx-EKGpuR enderPass-ClusteredBatchesRen | [|E§ || gfx-RenderDeferredLighting { 1.899 ms) 3l 2]

Il g |a]lsd|a fu-Wor|GraphichiodeDisplay (8 s IE [M|LzunchGpuRe nderPass Preparation (1619 ms) | M LRI of | [afx-EK Deferred [[]]
| [¥|B | |af=GF|][P |afx=WorldNade: || R gfx=Simp leShears JobScheduler-Local TaskE I [lall] 1]

| {08l vietdu [N [fofx-GFx Task-vil [} | Il EEEEE!EIEI Gl |l
|

1 | Trav mdmi{ﬁluﬁ Ren [Re [Re [RelRe[Re [Re [Re[Re|Re [Re] I”
Visu [Sim D
II [w |

El |

OPAQUE RENDERING

First person 400 best occluders Cenerate HiZ Opaque culling

rendering to depth buffer EE

SHADOW RENDERING

* Allshadows are cache based
* Usecached Hi-Z for culling

* Sunlight shadow donein full resolution
* Separate pass torelieve lighting resolve VGPR pressure
* Uses Hi-Z representation of the cached shadow map to reduce the work per pixel

* | ocallights are resolved in a quarter resolution
* Resolved results storedina texture array
* [ower VGPR usage onlight accumulation
* Bilateral upscale

SHADOW RENDERING -

* Shadow map containing all static objects built onload

912x312 ESM

N
33N

NN

“6Kx6K 16bit

Hi-Z

SHADOW RENDERING -

* Ability to scale shadow cost by mixing cascades with static map
* Static Hi-Z shadow map always used for dynamic object culling

* OnXbox One:

* |st cascades are fully dynamic (not enough resolution with 6K)
e 2"and 3rd cascades renders dynamic objects anly and blend with the static shadow map
* Athcascadeis substituted by the static shadow map

SHADOW RENDERING -

* We handle amaximum of 8 visible shadowed local lights

Static shadow map Hi-Z

On new
visible light

Render dynamic
objects

Each frame

LIGHTING

* Usesaclustered structure on the frustum:
* 32x32 pixels based ile
* /exponential distribution

* Hierarchical culling of light volume to fill the structure

* | ocal cubemaps regarded as lights

* Shadows, cubemaps and gobos reside in textures arrays
* Deferred uses pre-resolved shadow texture array
* Forward uses shadows depth buffer array

near

[
13
f a
r L3
il
i i
§ 1y
fo1
[! 3
I 1 1
] 1 1
]
1
{ |
:
1
f \
| 1
| 1
1
\
1
|

AGENDA

/ MATERIAL BASED DRAW/CAL

RAINBOW SIX DESTRUCTION

ART DIRECTION

* When destruction happens you need to feel that something big went on!

FLOORS & WALLS

* Procedurally generated unique geometry
* Poking holes degrades occlusion efficiency

DESTRUCTIBLE PROPS & DEBRIS

* Generally smaller meshes but in great numbers
* (Canbeinstanced or unique

UNIQUE

GEOMETRY [

2F
Walk-in BREACHING ROUND

1/199

== 100s0F |
DEBRIS

2F | ¥
Walk-in BREACHING ROUND
1/199

Bathroom

w
o~

2F
Bathroom

2F
Bathroom

RIRSIIINITII TG

b'.l -d

Bathroom

2F

2F
Bathroom

RAINBOW SIX DESTRUCTION

* Farly prototypes were largely graphic bound (CPU and GPU) on average

* PCDX11 deferred contexts aren't that great at scaling

* \aterial based draw call system
* Materials define destruction properties
* Debris share material

* See[Haar&Altonenl]

* [nneed of granularity in culling to keep up with destruction

UNIFIED BUFFERS

* Alot of resources in Rainbow Six reside in an unified buffer of some sort:
* Unified Vertex Buffer

* Unified Index Buffer

* Unified Constant Buffer

* Structured buffers built on top of raw buffers with auto generated code:
* Using C++ data descriptors for GPU unified data
* Metadata passed onto specify access pattern

UNIFIED BUFFERS - CONSTANT

vold EntityConstantBufferBridge::CreateDescriptor(ConstantBufferDescriptor® descriptor)

1
popBeginMapShaderParametersAndSetUsage(EntityConstantBufferBridge, descriptor, Entity);
popMapShaderParameter(”g_ NodelWorld™, m_WorldMatrix);
popMapShaderParameter(”g InvScaleSgr™, m_InvScaleSqr);

essBuffer g UnifiedConstantBuffer;
LoadEKInstanceProvider(uint index)

uint offset Mad U24({index, EKINSTANCEPROVIDER STRIDE, EKINSTANCEPROVIDER GLOBALBUFFER OFFSET);
g NodeWorld = ToFLOATAx4(
g UnifiedConstantBuffer.Load4(offset + 8x8),
g_UnifiedConstantBuffer.Loadd{offset + @x1@),
g_UnifiedConstantBuffer.Load4{offset + 8x28),
g_UnifiedConstantBuffer.Loadad{offset + @x38)
)i
g _InvScaleSqr = ToFLOAT4(g UnifiedConstantBuffer.Load4{offset + 8x48));

UNIFIED BUFFERS - BENEFITS

* Complete control over data layout

* We can easily experiment with different data type accesses (AOS, SOA,
Structure of u32 Arrays...)

* Custom packing and support for new data types

* Highlevel AP| supports broadcasting values

* Code auto-generation allows us to migrate to new access patterns easily

MATERIAL BASED DRAW CALLS

* Geometry and constants are unified

* Adraw callis then defined by :
* Shaders

* Non-Unified Resources (Textures, etc...)
* Render States (Sampler States, Raster States)

* Flements that share the above are batched together

* Passes that don't use a subset of the resources and states are further batched together

GATHERING DRAW CALLS

* Oninitialization, each submeshinstance is mapped to 3 batches: Normal, Shadow and Visibility

* The batch types used to mask non necessary data

* Fach batch will correspond to a MultiDrawIndexedIndirect command

VISIBILITY BATCH

NORMAL BATCH]

SHADOWBATCH] T
NORMALBATCH2 o eTuway
VISIBILITY BATCH 2 NORMALBATCH 3

GATHERING DRAW CALLS

* Fach submesh instance has a globally unique index:
* [ndex usedto fetchall data
e MU'tIplE indirection needed BASE VERTEX OFFSET

BASE CLUSTER OFFSET

MESH INDEX
SUBMESH INDEX
ENTITY INDEX
MESH INSTANCE INDEX

SUBMESH INSTANCE INDEX

ENTITY MATRIX
ENTITY INVSCALE

GATHERING DRAW CALLS

* Foreach pass gather the submeshinstance

indexintoadyna

mic buffer:

* Fachpass maps to one batch type exclusively
* Bufferfilledin multithreaded jobs (1.9ms linear)

* Fxtradatato perform culling is added:

* MultiDrawlnc
* Newindex bu

exedIndirect entry
fer offset

* Additional cul

ing flags

PASS BUFFER

SUBMESH INSTANCE INDEX
DRAW BUFFER OFFSET
INDEX BUFFER OFFSET

CULLING FLAGS

SUBMESH INSTANCE INDEX
DRAW BUFFER OFFSET
INDEX BUFFER OFFSET

CULLING FLAGS

PERFORMING CULLING

We define multiple types of culling:

* Level1: Submeshinstance culling
* Level 2: Submeshchunck culling
* Level 3: Submeshtriangle culling

BUFFER & CALL
Cem e
DISCARD

DISCARD

PERFORMING CULLING

LEVEL 1 CULLING

SCREEN SPACE SIZE
CULLING

N
DISTANCE CULLING

LEVEL 2 CULLING

SCREEN SPACE SIZE

CULLING LEVEL 3 CULLING
W

FRUSTUM CULLING TRIANGLE NORMAL

. CULLING
ORIENTATION CULLING

X
OCCLUSION CULLING

N
FRUSTUM CULLING

N
OCCLUSION CULLING

PERFORMING DRAW CALLS

PASS BUFFER - cune B MULTIDRAW BUFFER

SUBMESH INSTANCE 1 BATCH
DRAW BUFFER OFFSET - MULTIDRAW PRAMETERS

INDEX BUFFER OFFSET MULTIDRAW PRAMETERS
CULLING FLAGS

SUBMESH INSTANCE 2 BATCH 2
DRAW BUFFER OFFSET
INDEX BUFFER OFFSET

CULLING FLAGS

MULTIDRAW PRAMETERS
MULTIDRAW PRAMETERS

PERFORMING A DRAW CALL

DRAW CALLENTRY PRAMETERS

INDEX COUNT (N)

DYNAMIC INDEX BUFFER L INSTANCE COUNT (1..N)
UNIFIED VERTEX BUFFER START INDEX
SUBMESH INSTANCE INDEX BUFFER ﬂ . BASE VERTEX (0)
UNIFIEDCONSTANTBUFFER SUBMESH INSTANCE INDEX START INSTANCE

MESH DESCRIPTOR

VERTEX DATA

PERFORMING A DRAW CALL

Culling compute shader
writes out instance indices
ina Per Instance Buffer

VertexShaderInput

uint PrimitiveInstanceldx : PerInstanceInfo;
int VertexID : SV _VertexID;

s01d GetVertexFromUnifiedBuffer(uint clusterFirstVertexOffset, uint wertexIdx, cut UnpackedVertexFormat vertex)
{
nint offset = clusterFirstVertexOffset + vertexIdx * VERTEX_FORMAT STRIDE;
vertex.Position = ToFLOAT3(g VertexBuffer.Load3{offset + @));
vertex.Normal = ToUBYTE4(g VertexBuffer.Load (offset + 12));
vertex.TexCoord® = ToFLOAT16 2(g VertexBuffer.Load (offset + 16));
vertex.VertexID = vertexIdx;

PERFORMING A DRAW CALL

ReadFirstLane is used in the pixel shader when
loading UCB values with UnformsOffsets to be
able touse the GCN scalar unit & registers

struct VertexShaderOutput
ion uintd UniformsOffsets;

VertexShaderOutput VSMain(VertexShaderInput input)

LnadUnifDrmEEinput.PrimitinInstanceIdﬂj;
UnpackedVertexFocmat vfUnpacked;
GetVertexFromUnifiedBuffer(g ClusterFirstVertexOffset,

input.VertexID, vfUnpacked);

VertexShaderOutput wsOut;
vsOut.UniformsOffsets = g UniformsOffsets;

RAINBOW SIX DESTRUCTION

+3 prawcaus

123497

ROUND 3

@ © @ O

= 5 CC2F
100 8o Q B oo EZi Mapsmﬂce

BREACHING ROUND

“ 17,200

2200

T

- 2 S
d o
g
s
gy
|
ﬁ Q 0 = CC2F
95 (o) ®9 9 & rmo K M*"‘“““ Mﬁ—ammﬁ@gumn__

141192}

1234951 ' '

ROUND 3%

4 | 4
oY -
Vo o
P
-
=
&
|
rr‘!" &l

=y CC2F
09 EZ| Maps Office

In{game) Holt(glmai NAT(unknown) Ping:0ms CAPTURING NET STATS

v 0 234961

il |
' ROUND 1 -y B

BAICH

VISUALISATION

—-—»>)

F= O

E= ' - . GRAB

D @ O O = \ catr ‘
100 floo Q @« oo i ®os Boat Garage ! s AR33
26/176

Debug keys EXCLUSIVE In(glma.;‘Holt(glma) NAT(unkn

= AN EEREE iy
e ROUND 1 ,’. | »-‘:
~ MAIN BUILD

VISUALISATION

GRAB

!

BN A D N
100 @ foo Q@ @« oo il 8os Boat Garage ! Kl AR33
26/176

L2\ iy
Infgame) Host(game) NAT(unknown) Ping:0ms

RESULTS

= WAIN BUILD

0.1.0

e ” ot — v @ o CGIF
3 :'Z i S :__""' - 2 _<—. . 1 Q E‘ ““ 2 Boat Garage MP5K
s 14/90

FUTURE WORK

* Pushing empty draw calls has acost
* Wetrytohide it on consoles using async jobs
* Specifying the number of draw calls on the GPU would be the next step

* Using bindless resources to further batch draw calls

* Moving most of the scene graph traversal to the GPU
* [oD selection logic

AGENDA

CHECKERBOARD RENDERING

60 FPS MADE EASY

* We wanted 60FPS early in production
* First playable was running at around 30 on consoles
* 60 FPSaverage was hit a couple weeks after!

* Killzone approach seemed like a good idea to start with (see [Valiant14])

* Keeping nearly the same budget per pixel as a 30FPS game for screen pixels rendering
* EQAA based, we wantedit on PC too (low end and 4K support)

* Big “quick” win without having a major quality impact
* Silently enabled to see if people noticed

TEMPORAL INTERLACED RENDERING

* Totarget 1920x1080:
* We render geometry and lighting to 960x1080 render target

float4 SampleTexture2D(Texture2D t, S

* 3D velocity vector per rendered pixel S
* R12G12B8 format B e

float2 dx = ddx(coord);

float2 dy = ddy(coord);

* Projection matrixis offset each frame __reurn t.Samplecrad(s, coord, /2, dy);

* Need todivide x gradient by 2 to have similar texture filtering

TEMPORAL INTERLACED RENDERING

* Things not represented by motion on screen need to be dealt with
* Tried to maintain lighting/shadow changes to handle them better
* Color clamping (See [Karis14])

* Datatweaked so alternating effects take place over at least two frames
* Police carflash lights, light flickering
* Flickering oscillators modified to avoid single frame 0 to 1 transitions

* Aliasing on vertical lines
* \ot that easy afterall!

CHECKERBOARD RENDERING

* Baseidea came about to solve aliasing issues
* Fxperimented ona series of images tofirst test quality

* Formostimages PSNR was better using a checkerboard pattern:
* \iisually the results were more pleasing too

* Theideaof using MSAA 2X was bouncing around since the beginning
* WemadeapushforitforE3 2013

LINENEIGHBORS INTERPOLATION

,‘ w\
= n s
«‘1-* w”, \ ”,,,H,,m,m,m,m, : 1,“..”.ms..mm” nw'nmuw H

"HWH"\‘ WH ’ l:!! 1 HNWW]
c

nHHHllH' m

N

|H

“H“IH

Hi

HH

Hﬂm

/<

mt H

Hl H| ‘‘‘‘‘‘

| I

,.< -
..-»

_— “ s

= HWH IHIHII i “ l>|n i
A:‘:’ G *@w . “’HN W

CHECKERBOARD NEIGHBORS
INTERPOLATION

LINENEIGHBORS INTERPOLATION

llllllll
'''''

e el ”’”« M» i Ml / /

% ’.’"’" Ew i e '-'

/// ,.,3\\\ wo T e ,‘ .
- //’/ ™ 8 o

CHECKERBOARD NEIGHBORS
INTERPOLATION

’/////

% e
i
//////// 1 S\\\ W ’,,)\

LINENEIGHBORS INTERPOLATION

CHECKERBOARD NEIGHBORS
INTERPOLATION

CHECKERBOARD RENDERING IMPLEMENTATION

* Rendering toa Vs size (V2 width by /2 height) resolution
with MSAA 2X:

* We endup with half the samples of the full resolutionimage ~ standard 2 Sample Pattern

* D3D MSAA2X standard pattern

e 2 ColorandZ samples .

* Sample modifier or SV_Samplelndex input to enforce : e (o)
rendering all sample : :

* Fach sample falls on the exact pixel center of full screen
render target

CHECKERBOARD RENDERING BONUS

* Particle effects can be easily evaluated per pixel instead of per sample
* Youcanfitalot more stuffin ESRAM!

* Noneed tofixup gradients in the shaders!

CHECKERBOARD RENDERING IMPLEMENTATION

GRADIENT

Texture gradients are
FIXUP represented by red lines

With LOD bias

CHECKERBOARD RENDERING IMPLEMENTATION

* By offsetting the projection matrix again each frame we are able to alternate the pattern
* We don't always have access on PC to change sample locations

Even frames Odd frames

FILLING IN THE BLANKS

* Toreconstruct colors forunknown pixels Pand Q, we sample
* Current frame direct neighbors linear-Z
* Current frame direct neighbors color
* History colorand /

Fven frames Odd frames

HISTORY COLOR/Z

* One neighbor gets picked for motion velocity:
* Closest one to the camerato preserve silhouette

* With motion velocity we sample the previous resolved color

* That way we get touse filtering, but introduces accumulation errors! Even frames
* We clampthe re-projected color with AB E F for (- c
: : : : D |P?| A
* Using previous depth computed from motion we compute a confidence value 5
* [Usedtoblend back toward the unclamped value. B|Q7 E
H F

Odd frames

RESOLVED COLOR

* Having:
* The history color
* Theinterpolated color from direct neighbors

* Afinal coloris computed using two additional weights:

* Color coherency:
* Minimum difference between ABE F for Q
* Magnitude of velocity

Odd frames

COMPLETE FLOW

* Resolve quite complex
* | ots of tweaks for our content!

* Costs 1.4ms

* §—10ms net win

Previous Scene Color

Current Scene Color

Previous Motion Vector

Current Motion Vector

Previous Linear Depth

\ 4
Current Color YCoCg

[

Calc Current Min Z

Interpolate current neighbours]

]

Current Linear Depth :l i

Current Interpolated Color

\I{\ R
[Sample motion Vector] v
; [Luma Diff]
Motion - Motion | ¢
Vector XY i Vector Z
1k = ! Luma coherency
Sample Previous Depths]‘\ E v I
7 A \ [Sample Previous Color]
Prev Min-Z i Sample Previous Motion i
sy
(\ Pre Motion » J'
; , e 5 YCoCqg AABB Clamping]
[Depth Occlusion Test] i Motion Coherency Test | [-
Z-Confidence Motion Coherency Clamped Prev Color Ghosting--
Flickering++
[Un-clamping] Flickering-- .
[Compute final confidence] Ghosting++

Final Confidence

[Final blending]
v

@put Unknown PiD

Deinterlaced Render Target

IA

Final History Color

I‘

T-AA

* |ntegrates with the checkerboard rendering
* Canberunonthe sameresolve shader

* Done onthe sub-sample level, MSAA 4X style jitters on top of the
checkerboard pattern

* Reprojectged color weight uses similar logic

* Additional “Unteething” used to remove bad checkerboard patterns

TEETHREMOVAL FILTER

* Resolve canintroduce noticeable saw tooth patterns in the image

* Weapply afilter to remove them

* The filterworks on 3 horizontally or vertically adjacent pixels

* We setup athreshold #and binaries pixel each to
Oorliftheyfallintherange of [0, Z]or[1 - 4]

* Wedetecta010100r 10101 pattern

i

——————

——————

NOT TEETH:1X100

TEETH: 01010

FUTURE DEVELOPMENTS

* Checkerboard technique was a good win for us
* We are going to push more quality per pixel and build up onit

* |mplementation mostly by trial and error, we will move to a more
scientific approach on the different confidence weights and values used

SPECIAL THANKS

* Alexandre Lahaise
* ChenkKa

* Michel Bouchard
* [ionel Berenguier

* Paul Vlasie

tep
tep

fc

nen Hill
nen McAuley

1 Haar

Thank you!

QUESTIONS?

REFERENCES

* Karis14: https://de4dxmedrsdbp.cloudfront.net/Resources/files/TemporalAA small-59732822 pdf
 Haar&Aaltonen]9: http://advances.realtimerendering.com/s2015/aaltonenhaar siggraph2015 combined final footer 220dpi.pdf
e Schulz14: http:/'www.crytek com/download/2014 03 25 CRYENGINE GDC Schultz.pdf

Valient14: http://lwww.slideshare net/guerrillagames/killzone-shadow-fall-odc2 0 14-valient-killzonearaphics

Hill11: http://bloa.selfshadow.com/publications/practical-visibility/

Introvideo by 20Powerproductions : https:/www.youtube.com/watch?v=Rc0V98BzW3g
|cons by FLATICON.COM

https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf
http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
http://www.crytek.com/download/2014_03_25_CRYENGINE_GDC_Schultz.pdf
http://www.slideshare.net/guerrillagames/killzone-shadow-fall-gdc2014-valient-killzonegraphics
http://blog.selfshadow.com/publications/practical-visibility/
https://www.youtube.com/watch?v=Rc0V98BzW3g
FLATICON.COM

BONUS
SLIDES

GBUFFER LAYOUT
4 Render Targets (RGB10AZ + 3 * RGBAB) + Depth sStencil (D32 — S8)

World Normal (RGB10) GI Normal Bias (A2)
BaseColor (SRGBB) Config (A8)
Metalness (R8) Glossiness (GB) Cavity (sB8) Aliased Value (A8)
Velocity.xy (RGBB) Velocity.z (AB)
Default Self A (sA8)
Skin Skin SSS Mask (sA8)
Translucent Translucence (sA7) +Back Face (A1)

GBUFFER RENDERING

* Weuse inverted depth combined with a D32 float for better uniform depth precision distribution

* Fornormals we experimented with BFN first
* WemovedtoaR10GI10B10AZ format to save VGPRs and ALU

* \lelocity vectoris 30 and enjoys a higher precision on the X & Y axis to support our temporal
reprojection rendering

* GBuffer Layer 2's alphais aliased depending on the material type
* Self-AQ was not used since SSBC revealed itself sufficient most of time
* Weapply a higher SSAQ factor on the first person character

GBUFFER RENDERING

LIGHTING-GI

* (lis static and is based on a simplification of Assassin’s Creed Unity Gl
* [ow resolution volume covering whole map:
* Skyvisibility SH
* ImtoZmpervoxel

* High resolution volume covering the playable area:
* Skyvisibility SH
* Bounce color SH
* 23cm pervoxel

Screenshot of low res Volume Screenshot of high res Volume

near near, far, far

LIGHTING - DIRECT |

* We generate a clustered structure on the frustum: Tﬂ‘/ 1 n
* 32x32 pixels based ile HILM di=h
* /exponential distribution N)
* Hierarchical culling of light volume tofill the structure L

* | ight cookies (gobos) are gathered in an array to be able to fetch them dynamically
* Simply part of the light data as indices inan array

LIGHTING-SSR

* Donein ¥4 resolution

* UJses face normal to give ray direction

* Temporal reprojection with light accumulation (ray-based, not depth based)
* | inear marching, steps gloss dependent

* Jitterstart ray position and direction
* Temporal reprojection smooth the results

* |nvalidate previous frame result on camera movement

LIGHTING —REFLECTION

* | ocal cubemaps

* Parallax corrected

* Regarded as lights, volume injected in clustered lighting structure
* Residein cubemap array for easy access

* Cubemaps applied during SSR application
* [ocal cubemaps are SSR'’s primary fallback
* (3lobal cubemapis secondary fallback

Screenshot showing cubemap volumes

LIGHTING - FORWARD

* Support same set of features as the deferred pass:
* All shadows, cubemaps, cookies are in texture arrays

* \(GPR consumptionissues:
* Scaling down on the quality of shadow filtering
* (lass disables some lights types
* Still lowest occupancyin our renderer

* Expensive particles use the ESM version of the shadow cache

SCHEDULING

* Graphic thread managing work queues and stealing work when necessary, work stolen gets
executed on the immediate context when possible to minimize overhead.

* OnPCnodraw calls are recorded we let the material based draw call pipeline handle the scaling.

* Onconsoles graphics work has priority on Cluster 0 — Core 0, 1, 2 and we also maintain cluster
locality when scheduling tasks.

* Fork & joinwork can take a turn for the worst when hammering shared atomics. (add numbers)

SCHEDULING

* Rendering-specific scheduler on top of the engine scheduler:
* Full control of graphic task behavior to fit in our budgets

* Task dependencies code defined
* |nvesting on visualisation tools would have been worth while

* Firstimplementation used system fibers
* Workers can steal ajob with more priority instead of waiting
* Fibers confusing to programmers
* Some systems have trouble displaying them properly in the debugger

* Wemoved to a simpler model where yielding just executes a new job on the current context

GRAPHIC CPUPERFORMANCES ON RAINBOW

* Beside fromiinitialization, zero tolerance global allocator usage during the frame

* Heavy use of per worker thread local allocator
* Resets when outermost job finishes
* Helps oncache locality and more flexible

* Heavy use of pooling
* Dangling pointers becomes harder
* Adding memory state values on builds to check validity

* Memory access patterns were 9% of the optimization works on the graphic side
* Perthread gather lists are used to decrease inter thread communication
* Atomics have animportant cost if not used properly

SLISUPPORT

* Drivertracking disabled onall resources

* Simple scoping interface for update of resources that need sync
* Oneline addition to the code when necessary

* |Update of a couple of large buffers was implemented by propagating the
changes manually on each GPU

* Alot more efficient than synching buffers
* [Update of unified constant buffers takes a couple of s, copy brakes scaling

